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Abstract
In this paper we construct a model for the simultaneous compaction by which
clusters are restructured, and growth of clusters by pairwise coagulation. The
model has the form of a multi-component aggregation problem in which
the components are cluster mass and cluster diameter. Following suitable
approximations, exact explicit solutions are derived which may be useful
for the verification of simulations of such systems. Numerical simulations
are presented to illustrate typical behaviour and to show the accuracy of
approximations made in deriving the model. The solutions are then simplified
using asymptotic techniques to show the relevant timescales of the kinetic
processes and elucidate the shape of the cluster distribution functions at
large times.

PACS numbers: 64.60.Ht, 82.60.Nh, 05.70.Fh

1. Introduction

It would be useful to have models of nucleation which describe the differences in both size
and shape of growing clusters and yet are simple enough to be solvable analytically. Current
exactly solvable models of coagulation only describe cluster masses. As well as elucidating
the kinetics of aggregation and compaction, models involving size and shape would be useful
in the testing of numerical simulations of systems such as those used by Xiong et al [24, 25].
An alternative approach which takes explicit account of the separately evolving size and shape
of a typical cluster is given by Schild et al [15]. Although this is useful, it only follows one
cluster, so the method cannot output a distribution of sizes and shapes which can be tested
against experimental observations.

Typically one expects collision events, which allow aggregation, also to cause compaction
of clusters; the long-term effect of this is to transform fractal aggregates (similar those observed
in diffusion limited aggregation (DLA)) into more compact clusters. Modelling this by a single-
component coagulation process is complicated and requires many assumptions to be made
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[18]. This approach is pursued by Vemury and Pratsinis [20], where such a one-component
model is analysed in an attempt to find the self-preserving shape of cluster-size distribution.

Ideally the results described below should be calibrated against experimental data, or data
from computer simulations, for example the work on sintering carried out by Akhter et al [2],
where computer simulations are compared to experimental data. However, we would not
expect exceptionally good agreement from the models solved in this paper, since these have
no size or shape dependence in the aggregation kernels. More realistic kernels could be
used, and then it would be interesting to compare numerical solutions of such models against
experimental data and other simulation techniques. Kostoglou et al [13, 14] and di Stasio et al
[17] have also worked on modelling simultaneous coagulation and restructuring of cluster-
shape. Another area where two-component aggregation problems naturally arise is that of
charged clusters [3, 4, 19], where clusters are characterized independently by size and charge.

Other work on multi-component coagulation problems includes that of Elvingson and
Wall [11, 21], who developed a two-component version of the Becker–Döring equations
to model the formation of mixed micelles; these are clusters formed from two-species of
surfactant molecule. A similar model has been analysed by Wu [23]. Multi-component
Becker–Döring systems have been used in several models of the kinetics of vesicle formation
[6, 7, 9]. However, the situations under consideration in this paper require Smoluchowski
[16] aggregation rather than the restricted stepwise growth of Becker–Döring models. An
unusual multi-component coagulation which includes Smoluchowski-type aggregation arises
in the modelling of river-flow [8], where to make progress on the analysis the system is again
approximated by a single-component problem. In a few special cases of multi-component
Smoluchowski aggregation, exact solutions are available [22], and the solution constructed in
this paper relies on the ideas and methodology presented there.

In section 2 we derive a multi-component model of simultaneous coagulation and
compaction which is of Smoluchowski-type. This model is solved in section 3 by means
of generating function techniques. A numerical solution is also performed to allow us to
analyse some of the errors made in the modelling assumptions. The large-size and large-time
asymptotics of the exact solution is carried out in section 4—this allows some simplification
of expressions. Finally a discussion of the results is presented in section 5.

2. Model of simultaneous coagulation and compaction

2.1. Formulation of model

In our model we associate two parameters with each cluster: as in Smoluchowski’s model of
aggregation [16], we partition the distribution of clusters according to cluster mass; the novel
feature of this work is that we also partition clusters according to their maximum diameter.
Thus we denote a cluster of mass j and maximum diameter k by Cj,k .

We then allow two processes to act on the distribution of cluster sizes: a restructuring
of the cluster which transforms a fractal aggregate to make it more compact. This occurs
through some geometric rearrangement of the cluster’s constituent parts so as to reduce its
maximum diameter, as illustrated in figure 1. To each compacting event we assign a transition
rate γj,k . Once a cluster is maximally compact (i.e. its maximum diameter has reached some
minimum) this process will be assumed to have no further influence on a cluster. If we follow
the spherical liquid drop model of a cluster, then the minimum diameter for a cluster composed
of j monomers is kc(j) such that 4

3π
(

1
2kc(j)

)3 = j/σ , where σ is the density of a monomer
(since j is a measure of mass, j/σ is a volume). Thus kc(j) = (6j/πσ)1/3; if we work in
units in which the monomer has unit diameter, we find σ = 6/π ; and hence kc(j) = j 1/3.
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Figure 1. Illustration of compaction.
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Figure 2. Illustration of region of size (mass j ) and shape (maximum diameter k) parameter space
which correspond to physically relevant clusters in the model of section 2.1. The large letter ‘A’
denotes the admissible region.

In other applications, where clusters may preferentially form rod-like or disc-like aggregates,
some other functional form of kc(j) may be more appropriate. Whilst we are interested in
the full range of cluster sizes 1 � j < ∞, the range of maximum diameters k is restricted to
kc(j) � k � j . This region of (j, k) space is illustrated in figure 2.

The second process which occurs is coagulation, by which two clusters combine. Clearly,
the masses must simply sum, but clusters may combine in any orientation, so the maximum
diameter of the aggregate may be less than the sum of the maximum diameters of the initial
clusters. Formally, we have

Cj,k + Cr,s → Cj+r,q , (2.1)

with q potentially taking any value from max{k, s} to k + s. In a mean field model, we should
form some weighted average over all possible configurations. However, since we have a
mechanism to reduce the cluster’s maximum diameter, we take the ‘worst’ case scenario of
the greatest possible value of q, and allow the restructuring mechanism (figure 1) to spread
the resulting distribution over a range of diameters smaller than k + s. This mechanism is
illustrated in figure 3. Magnetic or electrically charged particles tend to form extremely
elongated structures during growth by coagulation (see, for example, Kammler et al [12]).

Taking the two mechanisms illustrated in figures 1 and 3 and applying the law of mass
action to derive equations for the concentrations cj,k(t), we obtain

dcj,j

dt
= Fj,j − Lj,j − γj,j cj,j ,

dcj,k

dt
= Fj,k − Lj,k + γj,k+1cj,k+1 − γj,kcj,k, (kc(j) + 1 � k < j)

dcj,k

dt
= Fj,k − Lj,k + γj,k+1cj,k+1, (kc(j) � k < kc + 1)

(2.2)
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Figure 3. Illustration of aggregation of clusters of arbitrary sizes (r and j ) and arbitrary shapes,
this being described by each cluster’s maximum diameter (s and k).

where Fj,k and Lj,k are the rates of formation and loss of clusters Cj,k through the usual
aggregation and fragmentation processes, that is,

Fj,k = 1

2

j−1∑
r=1

k−1∑
k=1

ar,s,j−r,k−scr,scj−r,k−s , (2.3)

Lj,k =
∞∑

r=1

∞∑
s=1

ar,s,j,kcr,scj,k. (2.4)

2.2. Integrable model of coagulation and compaction

Whilst model (2.2) is interesting and can be solved numerically, our aim here is to construct
a model which is explicitly and exactly solvable. Hence, we simplify equations (2.2). Firstly
we specify the rate coefficients ar,s,j,k and γj,k; the simplest aggregation rates to solve are
typically size-independent, thus we assume ar,s,j,k = a. In place of the lower limit k = kc(j),
we first approximate kc(j) by 1 + ε(j − 1) with ε small; however, such models are in general
still insoluble; to obtain an integrable system we take the limiting case and put ε = 0. This is
equivalent to defining kc(j) = 1. In section 3.3 we solve the systems numerically and analyse
the differences between systems with kc(j) = 1 and kc(j) = j 1/3.

For the compaction rate γj,k we assume γj,k = γ (k − 1) for some constant γ , since this
automatically becomes zero on the line k = 1, simplifying the mathematical formulation of the
problem. Physically, it also has the advantage of assigning a high rate of diameter reduction
to very ‘wispy’ aggregates (whose maximum diameter is close to their mass) and low rates of
diameter reduction to clusters which are almost maximally compact. Thus as well as being
mathematically convenient, we believe this to have good physical justification. For simplicity
we do not include any size-dependence (j) in γj,k: the rate at which the maximum diameter
reduces depends only on the maximum diameter. Combining these assumptions for γj,k and
aj,k,r,s , we obtain

ċj,k = 1

2

j−1∑
r=1

k−1∑
s=1

acr,scj−r,k−s −
∞∑

r=1

∞∑
s=1

acr,scj,k + γ kcj,k+1 − γ (k − 1)cj,k (2.5)

note that on the line k = 1, which represents the maximally compact clusters, the last
term automatically vanishes, since no further compaction of these clusters can occur. The
approximation of kc(j) by unity increases the region of (j, k) space accessible to the model,
as illustrated in figure 4. Also, note that provided that cj,k(t) = 0, for k > j , is satisfied at
t = 0 then this condition is satisfied by the distribution at all later times. Thus we need to
make no explicit specification of the condition k � j in (2.5), or write out a special equation
valid on k = j , since cj,j+1 = 0 automatically causes the penultimate term of (2.5) to vanish
on k = j + 1. At t = 0, we assume the system is completely in monomeric form, that is, the
initial data are cj,k = 0, for all j, k with the exception of c1,1 = �.
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Figure 4. Illustration of region of size (mass j ) and shape (maximum diameter k) parameter space
included in our explicitly solvable model system of section 2.2. This corresponds to the case ε = 0
of the linear approximation to the lower limit illustrated in figure 2.

3. Solution of model

We will aim to solve the system using the generating function approach of Davies et al [10];
hence we introduce transform variables x, y and define

C(x, y, t) =
∞∑

j=1

∞∑
k=1

cj,k(t) e−jx−ky, (3.1)

and we also make use of an alternative generating function

G(x, y, t) =
∞∑

j=1

∞∑
k=1

cj,k(t) e−(j−1)x−(k−1)y, (3.2)

which is related to C(x, y, t) by G(x, y, t) = C(x, y, t) ex+y . Associated with these functions,
we define functions which represent the total number of clusters in the system

C0(t) = G0(t) = C(0, 0, t) = G(0, 0, t). (3.3)

The initial conditions for C are C(x, y, 0) = � e−x−y , whilst for G they take on the simpler
form of G(x, y, 0) = �; both of these imply C0(0) = G0(0) = �.

The equation for the generating function C(x, y, t) is

∂C

∂t
= 1

2
aC2 − aC0C − γ (ey − 1)

(
C +

∂C

∂y

)
. (3.4)

The associated equation for C0(t) is Ċ0 = − 1
2aC2

0 which, when the initial condition C0(0) = �

is imposed, has the solution

C0(t) = G0(t) = 2�

2 + a�t
. (3.5)

Substituting C = G e−x−y into (3.4) we obtain

∂G

∂t
+ γ (ey − 1)

∂G

∂y
= 1

2
aG2 e−x−y − 2�aG

2 + a�t
. (3.6)

Solving by characteristics, with initial data on s = 0 parameterized by ξ, η of t = 0, x =
ξ, y = η,G = � gives

t ≡ s, x ≡ ξ, 1 − e−y = eγ s(1 − e−η), (3.7)
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and

G = 4�

(2 + a�s)2K(ξ, η, s)
, (3.8)

K(ξ, η, s) = 1 + e−ξ−η +
2 e−ξ (1 − eγ s(1 − e−η))

2 + a�s

+
2γ e−2γ /a� e−ξ (1 − e−η)

a�

{
E1

(−2γ

a�

)
− E1

(−γ

a�
(2 + a�s)

)}
. (3.9)

Expanding G(x, y, t) as a power series in both e−x and e−y , we find the full explicit
solution for each individual concentration

cj,k(t) = 4�

(2 + a�t)2

kj !

jk!(j − k)!
(1 − e−γ t − E(t))j−k

(
E(t) + e−γ t − 2

2 + a�t

)k−1

, (3.10)

where

E(t) = 2γ

a�
e−γ t−2γ /a�

[
E1

(
−2γ

a�

)
− E1

(
− γ

a�
(2 + a�t)

)]
. (3.11)

This is the exact explicit solution of the problem originally posed in (2.5), with initial data of
cj,k = 0 for all j, k except for c1,1 = �. Although our aim was to construct such a solution, and
it will be useful for verifying numerical solutions of such problems, it is not clear exactly what
behaviour is described by this function. Hence in the next section we will form approximations
of it to show the kinetic phenomena it describes.

3.1. Analysis of moments

Using the generating function (3.8), we now find properties of the distribution, such as the
behaviour of the first few moments. We define the joint moments by

Mp,q(t) =
∞∑

j=1

∞∑
k=1

jpkqcj,k(t). (3.12)

The number of clusters is given by M0,0 = G(0, 0, t); however, higher moments are given by
more complex formulae. Since C = e−x−yG = ∑∞

j=1

∑∞
k=1 cj,k e−jx−ky , we have

Mp,q(t) =
{(

− ∂

∂x

)p (
− ∂

∂y

)q

(e−x−yG(x, y, t))

}∣∣∣∣
(x,y)=(0,0)

, (3.13)

for example, M0,1 = G(0, 0, t) − Gx(0, 0, t) and M2,0 = Gxx(0, 0, t) − 2Gx(0, 0, t) +
G(0, 0, t). In particular, we have

M0,0 = 2�

2 + a�t
, M1,0 = �, M0,1 = �(E(t) + e−γ t ), (3.14)

M2,0 = �(1 + a�t), M0,2 = �[(3 + a�t)(e−γ t + E(t)) − 2], (3.15)

M1,1 = �(1 − 2(E(t) + e−γ t ) + (E(t) + e−γ t )2(2 + a�t)), (3.16)

where we have defined the time-dependent quantity E(t) by (3.11).
From the moments (3.14)–(3.16), it is possible to derive quantities of macroscopic interest.

For example, the average cluster size, J , can be derived in several ways:

J1 = M1,0

M0,0
= 1 +

1

2
a�t, J2 = M2,0

M1,0
= 1 + a�t, (3.17)
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J3 = M1,1

M0,1
= (2 + a�t)(E(t) + e−γ t ) − 2 +

1

(E(t) + e−γ t )
. (3.18)

In systems which do not undergo any sort of gelation behaviour, all these definitions should
give rise to broadly the same kinetic behaviour. Note that J1 and J2 are independent of γ , as
one would expect, since compaction does not alter cluster mass and neither does it affect the
subsequent rate of cluster coagulation. However, J3 depends on γ —this definition of average
cluster size showing some influence of the restructuring history of clusters. For a wide range
of parameters γ, a� and most times t, the value of J3 lies between J1 and J2: at small times J3

is close to J2, at larger times J3 approaches J1. For small γ /a� the crossover of J3 from J2 to
J1 occurs at large times, and for large γ /a� the crossover occurs at small times.

In a similar manner to (3.17)–(3.18), the average cluster diameter, K, can be defined by
any of

K1 = M0,1

M0,0
=

(
1 +

1

2
a�t

)
(E(t) + e−γ t ), (3.19)

K2 = M0,2

M0,1
= 3 + a�t − 2

E(t) + e−γ t
, (3.20)

K3 = M1,1

M1,0
= 1 − 2(E(t) + e−γ t ) + (E(t) + e−γ t )2(2 + a�t). (3.21)

3.2. Fractal dimension

In our definitions, the volume of a cluster Cj,k scales with its aggregation number, thus V ∼ j ,
and the diameter scales with L ∼ k. For fractal clusters, the dimension D is defined by
V = LD or D = log(V )/ log(L). Using definitions (3.17)–(3.21), nine different fractal
dimensions can be constructed,

Dp,q = log Jp

log Kq

. (3.22)

At small times, we expect the growing clusters to be linear in geometry, thus to have dimension
close to unity. However, of the nine definitions two give rise to dimensions of two (D2,1,D3,1)

and two more to dimensions of one half (D1,2,D1,3).
This leaves five definitions of dimensions, which are plotted in figure 5. From this we

see that two give quite low estimates, and one of these gives dimensions below unity, which
we discount as unphysical. In the left-hand graph, where γ = 0.01, we expect compaction
to occur on the timescale t = O(1/γ ); thus the second lowest curve also gives a compaction
timescale which is unexpectedly long. The upper three curves all give qualitatively similar
results. A similar outcome is observed when γ = 1, suggesting that the definitions D1,1,D2,2

and D3,2 should be preferred over the others. The upper curves in figure 5 exaggerate the
compaction effect, as fractal dimensions greater than three are only possible because of the
approximation we make when relaxing the constraint k � (6j/πσ)1/3 to k � 1.

A more accurate calculation of the fractal dimension may be achieved by noting that the
dimension of a particular cluster cj,k is log k/ log j . The average fractal dimension of the
whole population is thus given by an average of the form

D̃p,q,r,s =
∑∞

j=1

∑∞
k=1 jpkq(log j)r+1(log k)s−1cj,k(t)∑∞

j=1

∑∞
k=1 jpkq(log(j)r(log k)scj,k(t)

, (3.23)

for some constants p, q, r, s. Unfortunately formulae such as (3.23) cannot be explicitly be
evaluated given the form of our solution (3.10).
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Figure 5. Plots of fractal dimension against time for the parameter values a = 1, � = 1; on
the left γ = 0.01, and on the right γ = 1. Starting with the uppermost, the curves in the
left-hand plot represent D22,D32, D11, D23 and D33 and those in the right-hand plot represent
D2,2, D1,1, D3,2, D2,3,D3,3.
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Figure 6. Plots of average cluster size, maximum diameter and fractal dimension against time for
the parameter values a = 1, � = 1, γ = 0.1, for a system size of j, k � N = 30. Left: the top
three lines of data points correspond to calculations of the average cluster size J2 = M2,0/M1,0
and are almost superimposed: ‘+’ denotes the exact solution (kc = 1), circles denote the numerical
solution of the case with kc = j1/3, and crosses represent points from the kc = 1 calculation
rescaled by (3.24). The lower three data sets correspond to calculations of K2 = M0,2/M0,1; here
‘*’ represents the numerical solution of the system with kc = j1/3, the diamonds correspond to
the exactly solvable system where kc = 1, and the boxes represent data from the kc = 1 system
rescaled by (3.24)–(3.25). Right: plots of the fractal dimension D2,2 against time; the circles
correspond to the solution in the case kc = j1/3, stars to the case kc = 1 and diamonds to a
rescaling by (3.24)–(3.25) of the case kc = 1.

3.3. Numerical solution

In figure 5 we observe several of the curves rising rapidly to dimensions above three. The reason
for this is that in section 2.2, when deriving a set of equations which are explicitly integrable,
we replaced kc = j 1/3 by kc = 1. This significantly alters the calculation of the dimension
of the more compact clusters. To assess the implications of this approximation, we have used
Matlab to solve the system of ordinary differential equations (2.2) with γj,k = γ (k − kc(j))

and ar,s,j,k = a in both the cases kc(j) = 1 (the integrable case) and kc(j) = j 1/3. The
outputs were used to calculate the average cluster sizes Jp and diameters Kq and the fractal
dimensions Dp,q (1 � p, q � 3). A sample of the results are shown in figure 6, where J2,K2

and D2,2 are plotted against time.
Whereas excellent agreement is seen for the average cluster size J2, differences are clearly

visible in the maximum diameter, K2. For the system with kc = 1,K2 has a more rapid decay
than the system with kc = j 1/3. The differences are more pronounced when the fractal
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dimension D2,2 is calculated (right-hand graph in figure 6). Some of the difference can be
corrected for a posteriori, as we shall now show.

The range of diameters 1 � k � j used in our integrable model can be mapped onto the
range j 1/3 � k̂ � j in the more realistic model through the scaling

k̂(j, k) = (k − 1)j + j 1/3(j − k)

j − 1
, (3.24)

which is affine linear in k. The definitions of the moments can then be modified to

M̂p,q(t) =
∞∑

j=1

j∑
k=1

jpk̂pcj,k(t) (3.25)

with corresponding new definitions for the average sizes Ĵ q , K̂q and D̂p,q . In figure 6 it can
be seen that these modified quantities lie closer to the corresponding quantities for the system
with kc = j 1/3 than the system with kc = 1.

4. Asymptotics

In this section we return to the special case kc(j) = 1 for which the explicit solution is available
and we aim to describe in simpler terms the kinetics it describes. Using 5.1.7 of Abramowitz
and Stegun [1], we rewrite the solution (3.10)–(3.11) as

E(t) = 2γ

a�
e−γ t−2γ /a�

[
Ei

(
γ

a�
(2 + a�t)

)
− Ei

(
2γ

a�

)]
(4.1)

cj,k(t) = 4�

(2 + a�t)2

k

j

j !

k!(j − k)!
(1 − e−γ t − E(t))j−k

(
E(t) + e−γ t − 2

2 + a�t

)k−1

. (4.2)

Although it is useful to have the exact explicit solution (3.10), the expression is too complex to
give an intuitive feel of the dynamics it describes. In this section we make use of asymptotic
approximations to give simpler functional forms of the solution at large times and for larger
clusters (j, k, t � 1). This procedure will also highlight any potential similarity solutions
which may be approached.

It is well known that many aggregation phenomena exhibit self-similar scaling behaviour
at large times and large cluster sizes. To show the connection with already solved models we
write

Sj (t) =
j∑

k=1

cj,k(t). (4.3)

Using solution (3.10), we recover the classical solution Sj (t) = 4�

(2+a�t)2

(
a�t

2+a�t

)j−1
for the

additive kernel. This has the large-time asymptotic form

Sj (t) ∼ 4

a2�t2
e−2j/a�t for j ∼ t as t → ∞. (4.4)

This result implies that the typical cluster size scales linearly with time; hence we introduce
the scaled size variable η = j/t . From this we note that the aggregation number (mass) of the
cluster does not depend on the cluster’s diameter (k) or on the compaction rate (γ ). In more
realistic aggregation kernels the aggregation rate (aj,k,r,s) would depend on both the mass and
diameter of the cluster and this extra effect could lead to some correlation between cluster
mass and compaction rate (γ ).
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There are two obvious special cases of (4.1)–(4.2) which may lead to particularly simple
forms, and we examine these first: they are the cases where aggregation and compaction occur
on vastly different timescales. The crucial asymptotic formulae we make use of are the power
series obtained by expanding Ei(x) about x = 0, namely

Ei(x) ∼ ν + log(x) +
∞∑

n=1

xn

nn!
, (4.5)

and the large argument asymptotic expansion

Ei(x) ∼ ex

x

(
1 +

1

x

)
as x → ∞. (4.6)

Both are taken from Abramowitz and Stegun [1] (formulae 5.1.10 and a combination of 5.1.51
and 5.1.7, respectively).

4.1. Rapid compaction and slow coagulation (γ � a�)

This is the less interesting of the two special cases: clearly whenever any cluster cj,k is formed,
it will be compacted down to cj,1 over a very short timescale. Over a longer timescale the
distribution of cluster sizes will evolve, being dominated by cj,1.

4.2. Rapid compaction, faster timescale

This expected behaviour is confirmed by solution (4.2). We put a� ∼ O(1) and γ � 1,
then formally define the initial rapid timescale by τ = γ t ; however, since the initial
conditions are fully compact there is no dynamics over this timescale. For completeness
with later calculations, we note that the asymptotic form of Ê(τ ) = E(t) over this timescale is
Ê(τ ) ∼ 1 − e−τ − a�τ/2γ ; thus Ê(τ ) grows from zero towards a maximum of unity where it
saturates. The small correction term suggests that over the longer timescale E(t) will start to
decline.

4.3. Rapid compaction, slower timescale

Over the longer timescale (t = O(1)) each term in the quantity E(t) can be expanded giving

E(t) ∼ 2

2 + a�t
+

2a�

γ (2 + a�t)2
− e−γ t , (4.7)

confirming our earlier indications that E(t) declines over this slower timescale.
The decay of E(t) at large times (t � 1) is algebraic, with E(t) ∼ 2/a�t as t → ∞. In

this limit (4.2) can be approximated by

cj,k(t) ∼ 4

a2�t2

kj !

jk!(j − k)!

(
1 − 2

a�t

)j−k (
2

γ a�t2

)k−1

. (4.8)

Thus we see that each extra power of k reduces the concentration by a factor of 1
2γ a�t2, which

is extremely large since we are considering both γ � 1 and the large t limit.
The interesting asymptotic scaling of size with time is j ∼ t , for which we define η = j/t

and hence obtain

cj,1(t) ∼ 4

a2�t2
e−2j/a�t = 4

a2�t2
e−2η/a� as t → ∞, (4.9)

and

cj,2(t) ∼ 8j

γ a3�2t4
e−2j/a�t = 2η

γ a�t
cj,1(t). (4.10)
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Thus we see that the concentrations cj,1(t) do indeed dominate the system, as expected, and
exhibit self-similar growth in cluster size.

4.4. Slow compaction and rapid aggregation (γ � a�)

For the more interesting case we retain a� ∼ O(1), and assume γ � 1; thus the two timescales
are that of aggregation t = O(1), and the slower one being T = γ t = O(1), equivalent to
t = O(1/γ ) � 1.

4.5. Slow compaction, faster timescale

On the faster timescale t = O(1), we find that the quantity E(t) can be approximated by

E(t) ∼ 2γ

a�
log

(
1 +

1

2
a�t

)
, (4.11)

and so is uniformly small (provided that log t � 1/γ , which is certainly satisfied, since the
new timescale introduced in section 4.6 is t ∼ 1/γ ).

Expanding the exact solution (3.10), for t ∼ O(1) with γ � 1, we find

cj,k(t) ∼ 4�

(2 + a�t)2

kj !

jk!(j − k)!
(γ t)j−k

(
a�t

2 + a�t

)k−1

. (4.12)

Since γ � 1, the concentrations cj,k(t) are only of significant size (O(1)) along the line
j = k, where, at large times, we observe

cj,j (t) ∼ 4

a2�t2
exp

(
− 2j

a�t

)
. (4.13)

Some spreading of mass into the region k < j starts to occur at larger values of j, k and at
larger times; however, spreading of the most numerous clusters from the line k = j to the
compact state k = 1 does not occur until the longer timescale t = O(1/γ ) is entered.

4.6. Slow compaction, slower timescale

To analyse the slower (t � 1 for which T = γ t = O(1)) timescale, we firstly consider
the form of E(t) = Ẽ(T ) (4.1). For small T we have linear growth with Ẽ(T ) ∼ T and for
large T we find Ẽ(T ) is small and decaying algebraically with Ẽ(T ) ∼ 2γ /a�T . Numerical
evaluations of the function show that there is a single maximum between these two limits, and
using asymptotic analysis based on γ � a� we find the location (Tc) and height (Ec) of the
maximum are given by

Tc ∼ 1

log(a�/2γ )
� 1,

Ec = Ẽ(Tc) = 2γ /a�

Tc + (2γ /a�)
∼ 2γ

a�
log

a�

2γ
� 1.

(4.14)

The quantity Ẽ(T ) has the same form in the limit γ � a� as Ê(τ ) has in the limit γ � a�,
namely is zero at T = 0, rises to a maximum and then decays. When γ � a� the value of
Ê(τ ) at the maximum is close to unity, whereas for γ � 1, Ẽ(T ) is small even at the maximum
T = Tc.

To investigate the asymptotic behaviour of the solution (4.2) at large times and large cluster
sizes, we introduce the scalings j = J/γ and k = θj = θJ/γ, θ = k/j (with θ ∈ (0, 1))
being the relative compactness of the cluster Cj,k . This leads to

cj,k(t) ∼ 2γ 5/2
√

2θc

a2�T 2
√

πJ(1 − θc)

eJH(θ,T )/γ

(e−T + Ẽ(T ))
, (4.15)
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where

H(θ, T ) = −θ log θ − (1 − θ) log(1 − θ) + θ log

(
e−T + Ẽ(T ) − 2γ

a�T

)
+ (1 − θ) log(1 − e−T − Ẽ(T )), (4.16)

and θc is the position of the maximum of H(θ, T ). The dominant contribution to the shape of
cluster distribution function in (j, k) space is due to the term H(θ, T ). To simplify this term
we form the Taylor series of H(θ, T ) around its maximum in the manner of Laplace’s method
[5]. Solving Hθ = 0, we find the relative compactness (θ ) of the most frequently occurring
cluster type, θ = θc(T ),

θc(T ) = e−T + Ẽ(T ) − 2γ /a�T

1 − 2γ /a�T
∼ e−T + O

(
γ

a�
log

a�

γ

)
. (4.17)

Note that this is the same θ -value for all cluster sizes J . To quadratic terms, H(θ, T ) is
approximated by

H(θ, T ) ∼ −2γ

a�T
− (θ − θc(T ))2

2θc(T )(1 − θc(T ))
. (4.18)

Combining this with the prefactor given in (4.15), we find

cj,k(t) ∼ 2
√

2γ 5/2

a2�T 2
√

πJ(1 − e−T )
exp

(
T

2
− 2J

a�T
− (KeT − J )2

2γ J (eT − 1)

)
. (4.19)

Over this timescale we see the transition from most of the mass being focused around the line
k = j to the fully compact state where the distribution has its maximum around the line k = 1.
The position of the maximum being given by k = θc(T )j = je−γ t .

The solution at large cluster sizes and at large times is illustrated in figure 7, where
γ /a� = 10−2, at times t = 4, 30, 70, 140, 400. In the top graphs, the mass can be seen to
lie predominantly along the line k = j , which in successive graphs moves to k = 0.74j at
t = 30, k = 0.50j at t = 70, k = 0.25j at t = 140, the ratios k/j agreeing well with e−t/100.
At t = 400, we find almost all the system’s mass along the line k = 1; consistent with the
prediction θ = k/j = e−4 ≈ 0.02. Simultaneous with this change in shape of the clusters, we
observe a steady increase in size as the distribution evolves from a large and sharply peaked
maximum at j = 1 to much lower concentrations over a broad range of sizes.

At even longer timescales, when t � 1/γ , the system is dominated by fully compact
clusters, that is, clusters of the form Cj,1. For large j we have the similarity solution

cj,1(t) ∼ 4 e−2j/a�t /a2�t2, (4.20)

and cj,2(t) ∼ j e−γ t cj,1(t), thus cj,2(t) � cj,1(t).

4.7. Compaction and aggregation on similar timescales

Figure 8 shows the case where the rates of aggregation and compaction are similar, that is
γ ∼ a�. In this case there is no way to simplify the form of E(t). Simply deriving the
large-time asymptotic solution of (4.1)–(4.2) will lead to a solution in which the maximally
compact clusters dominate all others (cj,k(t) � cj,1(t) for all k � 2) and the size-distribution
has the self-similar form cj,1(t) = 4 e−2j/a�t /a2�t2.

For large j, k with k = θj and time taken to be O(1), we have

cj,k(t) ∼ 4�
√

θ ejH(θ,t)√
2π j(1 − θ)(2 + a�t)[(2 + a�t)(e−γ t + E(t)) − 2]

, (4.21)
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Figure 7. Left-hand column: plots of cj,k(t)/c1,1(t) from (4.2) against j and k. Right-hand column:
plots of log cj,k(t) in black and in grey, the approximation (4.19). Descending in sequence, the
plots illustrate the shape of the distribution at times t = 4, 30, 70, 140, 400 for the parameter
values γ = 0.01, a = 1, � = 1.

H(θ, t) = θ log

(
e−γ t + E(t) − 2

2 + a�t

)
− θ log θ − (1 − θ) log(1 − θ)

+ (1 − θ) log(1 − e−γ t − E(t)). (4.22)

As with (4.15), the dominant term in the expression for cj,k(t) is ejH(θ,t) and H(θ, t) has a
maximum θc(t) which is independent of j , that is, the transformation from extended (θ = 1)

to compact (θ = 0) clusters occurs at the same time for all cluster sizes. This is given by
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Figure 8. Left-hand column: plots of cj,k(t)/c1,1(t) from (4.2) against j and k. Right-hand column:
plots of log cj,k(t). Descending in sequence, the plots illustrate the shape of the distribution at
times t = 0.1, 1.1, 2.1, 3.1 for the parameter values γ = 1, a = 1, � = 1.

solving Hθ(θ, t) = 0 and leads to

θc(t) = (2 + a�t)(e−γ t + E(t)) − 2

a�t
. (4.23)

However, there is no simplification of the expression for H(θc(t), t) and so no straightforward
approximation for cj,k(t) is available.

5. Discussion

We have formulated a model of cluster growth in which both the size (mass) and shape
(maximum diameter) of clusters are explicitly and independently taken into account. The form
of the resulting model is that of a multi-component aggregation problem with an additional
restructuring process which we have referred to as ‘compaction’ by which a cluster’s maximum
diameter is reduced while its mass is left unchanged.
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The model is approximated by simplifying the range of maximum diameters allowed
from (6j/πσ)1/3 � k � j to 1 � k � j , where k is the maximum diameter of a cluster
of mass j , density σ and hence volume j/σ . Following certain assumptions on the form of
the rate coefficients, we have obtained a model which is solvable explicitly using analytical
techniques. The resulting solution can be used to check numerical solvers of multi-component
systems.

As proposed, the model only allows compaction but generalizations which model
processes by which spherical clusters are stretched could easily be incorporated, as illustrated
in [14]. Due to the fact that only compaction is included in the model, all mass will eventually
end up on the curve k = (6j/πσ)1/3 and on k = 1 in the approximated model. We have
discussed various ways that the average fractal dimension can be calculated; unfortunately the
most accurate formula (3.23) does not lead to expressions which can be explicitly evaluated
using our asymptotic solution. Instead we have shown that a cruder approximation based on
the average cluster size and average diameter can be used to give an indication of the rate of
compaction of clusters.

We have used Matlab to analyse the difference between systems where the maximally
compact cluster has a maximum diameter of kc = O(j 1/3) and the explicitly solvable system
where kc = 1. The differences are not large, in the former model the range of maximum
diameters allowed at any cluster mass j is j 1/3 � k � j , which we have approximated by
1 � k � j . For large masses, j , the relative difference is O(j−2/3), which is small. However,
by incorporating the range from k = 1 to k = O(j 1/3) we are losing some of the geometric
information about the allowable structure of clusters. In calculations of the average maximum
diameter and fractal dimension, these differences become noticeable, as can be seen in figure 5,
where fractal dimensions of 3 and above are rapidly realized. We have illustrated how an
a posteriori rescaling of the results by (3.24)–(3.25) can eliminate the majority of the
discrepancy in the calculation of the average diameter and fractal dimension (see figure 6
for details).

We have chosen monodisperse initial data and simplified the resulting solution using
asymptotics; this enables us to illustrate some of the kinetic features of simultaneous
aggregation and compaction. For the combination of aggregation kernel and compaction
rates adopted here, the large-cluster size asymptotics are particularly simple: the timescale
over which compaction occurs is the same for all cluster sizes. We expect that when more
general rate coefficients are employed, large and small clusters may restructure over different
timescales. For rapid compaction and slow coagulation, the results are straightforward as
clusters are always in their most compact form, and grow in size according to the usual self-
similar solution. When aggregation is much faster than compaction the kinetics of the solution
are more interesting. There is a faster timescale where self-similar growth is seen along the
line k = j , that is, linear aggregates form in a self-similar fashion. Over a slower timescale the
whole distribution of cluster sizes restructures to the more compact form, whilst continuing to
grow in size following the same self-similar rule. For more general rates of growth and shape
restructuring one would expect more complex rules, where small and large clusters changed
their shape and fractal dimension over differing timescales.
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